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INTRODUCTION
The classical bound on the error in linear interpolation of function f on
interval (a,b) is given by
1 "
é(b-a)auf "(a,b)
where

1" a,p) = sup | £"(x)
asxsb

We wish to obtain meshes (x;, 1 € i € n) whicn will somehow equilibrate the

"error” over each subinterval,

GOOD MESHES
C. deBoor {(ref 1) has supplied us with a computationally simple method for
generating what he calls "good" meshes. His idea is to make the classical bound

This is equivalent to

%
(xi+1'xi)"f""(xi,x1,1) = constant

or
Xi+ %
IXi inf “(Xi'xi+1)dx = C
As n becomes large and x;,1-xi - 0 for all i, we approximate the integrand by
|00l % = g(x).

Thus, we have a relatively simple probiem to solve

Xi+1
/ g({x)dx = ¢ 1
X

i < n

a
-

X
1f we define G(x) = [ g(t)dt, we have G(x;) = (i-1)c, therefore
X1




6(x) _ -1 K i
= G(xn)J 1 <i<n

11

D=
[T

[
In practice, we may only have a positive, continuous, piecewise linear estimate
of g over some mesh u. We denote this estimate of g by v. G as defined by

X
G(x) = [ v(t)dt Up < X < up

u

1

would then bte piecewise quadratic and invertible in the following manner:

(G*-G;)
G™'(G*) = x* = uj + 2 ----= pad
v;+¥D
where
Gy = 0, Gj+1 = Gj + (Uj+1-Uj)(Vj+Vj+1)/2 1€ j<m
Gj € G* € Gi41
p = (G*-Gi)/(Gi+1-Gi)
and

D = (1-p)Vi + pvieq
A1l this is common knowledge. Unfortunately, good meshes do not always seem
guite as good as we might like them to be. The shorter subintervals have a
fairly uniform error bound pattern, but the lengths of the longer subintervals
are overestimated, yielding larger error bounds. This is due to the fact that
the integral of the norm of g is underestimated by the integral of g. In fact,
it is easy to prove that for f(x) = xp(p >2, 0 £ x <1), the largest error
bound on a good mesh is exactly equal to the largest error bound on the
corresponding uniform mesh (x1+1-xi = const).

In order to get what we might call "better" meshes, we go back to the

original problem:




Find n-2 x's (x7 and xp, fixed) such that
Xi+1
(X541-%:i) 090 (x4, x4,1) = in hgll (x5, x44,)9% = C 1<i<n
This problem is described in Reference 1 as being rather difficult to sclve in
general. Even if we knew what ¢ was, solving
(Xi41-%3 0G0 (5, x541) = ©

for xi41 given x; would not be easy. The problem obtained upon substituting v
for g, however, is quite easy to solve (ref 2). In addition, if v is a very
good approximation to g (with m >> n), we get a virtually constant error bound
for the entire mesh!

We refer to the following equation as the "stepping" equation:

(B-a)ﬂvu(a'ﬁ) =c
The solution of the stepping equation for B given a and c represents the central
part of our algorithm for obtaining better meshes. Although the stepping
equation is nonlinear in B, the piecewise linearity of v enables us to solve it
noniteratively. For given a and c, we solve the stepping equation in the
following manner. Suppose a € (uj,ujs1) and we have located j such that
(“j'a)“V“(a,uj) <¢c < (uj¢1-a)ﬂvﬂ(a'uj+1)
Hence,
B € (uj,uje)
To locate j, we simply search from left to right, computing the norms as we go
and checking the previous inequality. We use
"V"(avui+1) = Max{(v(a),visq)

and

“V"(a,uj+1) = Max("vu(a'uj),VJ+1)




Now if
“V"(G,UJ) = "V"(a,Uj+1)
we have
-a)itvil .y = C
(B-a) (a:UJ)
hence
8 =a+ C/"V"(a,uj)
But if
"V"(a,uj) < "V“(G,UJ+1)
there is a
t e (uj,ujer)
such that

IVl (g,uj) = Ivli(g,t) = v(t)

and this t is given by
t = uj + (“V"(a’uj)-Vj)/S
where
s = (Vj+1‘Vj)/(Uj+1‘Uj)
Now if
(t-a)uvu(a'uj) > ¢
B must lie to the left of t and
B=as+ c/uvu(a,uj)
as before, but if

(t‘“)"V"(a,uj) <c

B lies to the right of t and

(ﬁ-a)"vu(a'ﬁ) = C

However, in this case,

”V"(alc) = v(B8) = vj + 5(5‘Uj)




Therefore,
(B-a) (vj+s(B-uj)) = ¢
or
(B—a)(vj+s(B-a-a-uj)) = ¢
or
s(B-a)? + k(B-a) - ¢ =0
where

k = vj + S(G—Uj)
Solving this simple quadratic equation for 8 - a yields
B = a + (¥Yk2+4sc-k)/(2s) for k < O
and

8 a + 2¢/(k+¥kz+4sc) for k > O

Having elaborated the solution to the stepping equation for arbitrary c, we

now consider obtaining the correct value of ¢ by defining the function u
u(c) = v-n

where v is the number of x's we get by solving the stepping equation v-2 times
{x1 and %y = xn being fixed). 1t is intuitively clear that for small ¢, g will
be positive and for large ¢, u will be negative. Since u is a step function, we
are interested only in its leftmost zero, the correct valur of c. When the
correct value of ¢ has been chtained, we shall have concurrently obtained the
better or uniform error bound mesh. Therefore, we see that to find the better
mesh, we need only solve a single noniinear equation in a single unknown (by
modified bisection), where each evaluation of u involves an O(m) search through

the (u,v) data and O(n) solutions of simple linear or quadratic equations.




Suppose we are not satisfied with better meshes and decide to take the
additional step of finaing the bast possible mesh. We define this best mesh as
one in which the maximum absolute error is constant, independent of subinterval.
Now we must work in terms of exact error instead of error bounds. The exact

error in linear interpolation of f on interval (a,b) is given by

e(x) = 22X [ (t-a)fr(t)a
a

X-a b "
+ 5:5 fx (b‘t)f (t)dt

If X, is the maximizing or minimizing point of e,
e'(Xg) = 0
implies
Xm b
[ (t-a)f"(t)dt = /  (b-t)f"(t)dt

a Xm

which, in turn, implies that

Xm .b
e(Xg) = fa (t-a)f"(t)dt = jx b~t)f"(t)at
m

These last two equations tell us that for given a, E, and f", we can, in prin-

ciple, solve
E=f  (t-a)f"(t)dt
for xm and then solve

b
E =/ (b-t)f"(t)dt
Xm
for b. We therefore see that finding the best mesh is not a very different

process from finding the better mesh. The major difference is that two

equations must be solved in the stepping process instead o7 one. This stepping




process is further simplified to solving simple quadratic equations if we use a
pi2cewise constant approximation to f".

The first half of the stepping process amounts

t2 solving

R(B) =

+ E for 8
g°/en a where

R(B) = /B (t-a)f"(t)dt
a

1f f"(x) = c; on (uj,ujsq), we have

. vsi 8
R(B) = fa (t-a)f"(t)dt - Iu (t-a)cidt (Be(uj,usipq))
1‘

1 8
5 cilt-a)? ! ;

= R(uj) + 3 ci((B-a)*(uj-a)?)

= R(ui) + 1

5 Ci(B-uj)(B+ui-2a)
The recursion €or R is

Risp = Ry + 5 Cilujsep-ui)(uj+uiyy-2a)
The second half of the stepping process amo'.nts to solving

s(y) = + E for vy
given 8 where

y
S(y) = fﬁ (y-t)f"(+)dt

For v € (u;,u;j4q1), we have
U1' Y
S(y) = [ (y-t)f"(t)dt + [ (y-t)c;at
B ujy
Ui 1 Y
= fB (ui-t+y-u1)f"(t)dt "5 cii()’-t)zlu‘i

.
= S(uj) + (v-u3) 131 £ (2)dt +

cify-uy)?

rotes




Letting

f"(t)dt
IB (t)

we have

Tie1 = Tq + cilUier-uj)

and the leCUISiOn '0| 5
s T 1 u 2
. 1_5 + (u. l-u.) : +_c.( - l_u.)

We mention in passing that after we have computed 8, and as we search for y, we
will need to compute additional B's if there are inflection points present in f.

Having given this rather brief sketch of the best mesh process, we proceed
to some interesting graphical results shown in Figures 1 through 4. We have
obtained good, better, and best meshes for the simple test functions x3(1-x)¢
and x'°, and we may describe our little odyssey as follows. Starting with
deBoor's good mesh with its predictably large bounds on the long subintervals,
we then proceed to flatten these bounds out almost perfectly through the better
mesh. Proceeding one additional step to obtain the best mesh (whose maximum
error can indeed be seen to be constant), we then note the striking similarity
petween the good mesh and the best mesh. One might therefore say that in going
from good to better to best meshes, we have come nearly full circle and can see
the wisdom of the old French proverb: "The more things change, the more they
remain the same."” It would seem that the only thing deBoor can be criticized
for is excessive modesty in referring to his meshes as merely good when, in

fact, they are nearly best.
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ERROR BOUND AND MAXIMUM ERROR PATTERNS FOR GOOD MESH
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